Milligan TA. Epilepsy: a clinical overview. Am J Med. 2021;134:840–7.
Article
PubMed
Google Scholar
Xiang L, Ren Y, Cai H, Zhao W, Song Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res. 2015;1622:484–95.
Article
CAS
PubMed
Google Scholar
Pertuiset B, Sichez JP, Arthuis F, Robert G, Nakano H, Van Effenterre R, Fusciardi J, Goutorbe J, Metzger J, Ancri D, et al. Surgical treatment of supra-clinoid saccular arterial aneurysms admitted 3 weeks following rupture. Neurochirurgie. 1987;33(Suppl 1):1–106.
PubMed
Google Scholar
Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017;29:1–16.
Article
PubMed
Google Scholar
Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16:249–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013;56:271–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bronisz E, Kurkowska-Jastrzębska I. Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediators Inflamm. 2016;2016:7369020.
Article
PubMed
PubMed Central
Google Scholar
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–43.
Article
PubMed
Google Scholar
Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia. 2012;60:1258–68.
Article
PubMed
Google Scholar
Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA, Lim D. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci. 2018;47:211–21.
Article
PubMed
Google Scholar
Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia. 2011;52(Suppl 3):33–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 2019;11:eaaw8283.
Article
CAS
PubMed
Google Scholar
Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol. 2014;75:864–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JE, Park H, Lee JE, Kang TC. CDDO-me inhibits microglial activation and monocyte infiltration by abrogating NFκB- and p38 MAPK-mediated signaling pathways following status epilepticus. Cells. 2020;9:1123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao J, Yin S, Song Y, Zeng L, Li S, Liu N, Sun H, Fu Z, Wang Y, Li Y, et al. Novel scorpion venom peptide HsTx2 ameliorates cerebral ischemic brain injury in rats via the MAPK signaling pathway. Biochem Biophys Res Commun. 2021;534:442–9.
Article
CAS
PubMed
Google Scholar
Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu. 2015;36:183–222.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Feng Z, Yang M, Zeng L, Qi B, Yin S, Li B, Li Y, Fu Z, Shu L, et al. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res. 2021;163: 105296.
Article
CAS
PubMed
Google Scholar
Mortari MR, Cunha AO, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther. 2007;114:171–83.
Article
CAS
PubMed
Google Scholar
Zhao R, Zhang XY, Yang J, Weng CC, Jiang LL, Zhang JW, Shu XQ, Ji YH. Anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, in rat models of epilepsy. Br J Pharmacol. 2008;154:1116–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godoy LD, Liberato JL, Celani MVB, Gobbo-Neto L, Lopes NP, Dos Santos WF. Disease modifying effects of the spider toxin parawixin2 in the experimental epilepsy model. Toxins. 2017;9:262.
Article
PubMed
PubMed Central
Google Scholar
Liberato JL, Godoy LD, Cunha AOS, Mortari MR, de Oliveira Beleboni R, Fontana ACK, Lopes NP, Dos Santos WF. Parawixin2 protects hippocampal cells in experimental temporal lobe epilepsy. Toxins. 2018;10:468.
Article
Google Scholar
de Castro ESJ, Lopes do Couto L, de Oliveira Amaral H, Maria Medeiros Gomes F, Avohay Alves Campos G, Paulino Silva L, Renata Mortari M. Neuropolybin: a new antiseizure peptide obtained from wasp venom. Biochem Pharmacol. 2020;181:114119.
Article
Google Scholar
Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci Lett. 2018;667:47–52.
Article
CAS
PubMed
Google Scholar
Quinn SR, O’Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol. 2011;23:421–5.
Article
CAS
PubMed
Google Scholar
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37:555–65.
Article
CAS
PubMed
Google Scholar
Czubak K, Sedehizadeh S, Kozlowski P, Wojciechowska M. An overview of circular RNAs and their implications in myotonic dystrophy. Int J Mol Sci. 2019;20:4385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.
Article
CAS
PubMed
Google Scholar
Lee WJ, Moon J, Jeon D, Kim TJ, Yoo JS, Park DK, Lee ST, Jung KH, Park KI, Jung KY, et al. Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS ONE. 2018;13: e0209829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Q, Chen J, Zheng X, Zhang Y, Tao X, Ye J. Circular RNA Circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 Axis. Neurochem Res. 2020;45:3034–44.
Article
CAS
PubMed
Google Scholar
Zheng D, Li M, Li G, Hu J, Jiang X, Wang Y, Sun Y. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cell Signal. 2021;80: 109901.
Article
CAS
PubMed
Google Scholar
Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018. https://doi.org/10.3791/56573.
Article
PubMed
PubMed Central
Google Scholar
Racine RJ. Modification of seizure activity by electrical stimulation II motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.
Article
CAS
PubMed
Google Scholar
Zhu Y, Liu M, Qu S, Cao C, Wei C, Meng XE, Lou Q, Qian D, Duan JA, Ding Y, et al. Elaphuri Davidiani Cornu improves depressive-like behavior in mice and increases neurotrophic factor expression in mouse primary astrocytes via cAMP and ERK-dependent pathways. Front Pharmacol. 2020;11: 593993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020;18:918–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40.
Article
CAS
PubMed
Google Scholar
Yin S, Pang A, Liu C, Li Y, Liu N, Li S, Li C, Sun H, Fu Z, Wang Y, et al. Peptide OM-LV20 protects astrocytes against oxidative stress via the “PAC1R/JNK/TPH1” axis. J Biol Chem. 2022;298: 102429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin S, Yang M, Li Y, Li S, Fu Z, Liu N, Wang Y, Hu Y, Xie C, Shu L, et al. Peptide OM-LV20 exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Biochem Biophys Res Commun. 2021;537:36–42.
Article
CAS
PubMed
Google Scholar
Shu L, Yang M, Liu N, Liu Y, Sun H, Wang S, Zhang Y, Li Y, Yang X, Wang Y. Short hexapeptide optimized from rice-derived peptide 1 shows promising anti-hyperuricemia activities. J Agric Food Chem. 2022;70:6679–87.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wang Y, Zeng L, Liu Y, Sun H, Li S, Wang S, Shu L, Liu N, Yin S, et al. Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-beta1/Smad axis. Burns Trauma. 2022;10:tkac032.
Article
PubMed
PubMed Central
Google Scholar
Qin P, Tang J, Sun D, Yang Y, Liu N, Li Y, Fu Z, Wang Y, Li C, Li X, et al. Zn(2+) Cross-linked alginate carrying hollow silica nanoparticles loaded with RL-QN15 peptides provides promising treatment for chronic skin wounds. ACS Appl Mater Interfaces. 2022;14:29491–505.
Article
CAS
PubMed
Google Scholar
Sun H, Wang Y, He T, He D, Hu Y, Fu Z, Wang Y, Sun D, Wang J, Liu Y, et al. Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds. J Nanobiotechnol. 2021;19:304.
Article
CAS
Google Scholar
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26:2738–58.
Article
CAS
PubMed
Google Scholar
Hu YT, Hu J, Li T, Wei JJ, Feng J, Du YM, Cao ZJ, Li WX, Wu YL. Open conformation of hERG channel turrets revealed by a specific scorpion toxin BmKKx2. Cell Biosci. 2014;4:18.
Article
PubMed
PubMed Central
Google Scholar
Mohammadi S, Savitzky AH, Lohr J, Dobler S. Toad toxin-resistant snake (Thamnophis elegans) expresses high levels of mutant Na(+)/K(+)-ATPase mRNA in cardiac muscle. Gene. 2017;614:21–5.
Article
CAS
PubMed
Google Scholar
Zou X, He Y, Qiao J, Zhang C, Cao Z. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon. 2016;109:33–41.
Article
CAS
PubMed
Google Scholar
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an anti-epileptic peptide distinctly affects the gating of brain subtypes of voltage-gated sodium channels. Int J Mol Sci. 2019;20:729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li CL, Zhang JH, Yang BF, Jiao JD, Wang L, Wu CF. ANEPIII, a new recombinant neurotoxic polypeptide derived from scorpion peptide, inhibits delayed rectifier, but not A-type potassium currents in rat primary cultured hippocampal and cortical neurons. Regul Pept. 2006;133:74–81.
Article
CAS
PubMed
Google Scholar
Shi Y, Jia X, Xu J. The new function of circRNA: translation. Clin Transl Oncol. 2020;22:2162–9.
Article
CAS
PubMed
Google Scholar
Chen F, Zheng H, Zhang W, Kang J, Liu Q, Pu J, Yang L. circ_0003170 aggravates human hippocampal neuron injuries by regulating the miR-421/CCL2 axis in cells models of epilepsy. Gen Physiol Biophys. 2021;40:115–26.
Article
CAS
PubMed
Google Scholar
Henshall DC, Hamer HM, Pasterkamp RJ, Goldstein DB, Kjems J, Prehn JHM, Schorge S, Lamottke K, Rosenow F. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15:1368–76.
Article
CAS
PubMed
Google Scholar
Gong L, Yang P, Hu L, Zhang C. MiR-181b suppresses the progression of epilepsy by regulation of lncRNA ZNF883. Am J Transl Res. 2020;12:2769–80.
CAS
PubMed
PubMed Central
Google Scholar
Petrillo F, Iervolino A, Angrisano T, Jelen S, Costanzo V, D’Acierno M, Cheng L, Wu Q, Guerriero I, Mazzarella MC, et al. Dysregulation of principal cell miRNAs facilitates epigenetic regulation of AQP2 and results in nephrogenic diabetes insipidus. J Am Soc Nephrol. 2021;32:1339–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7.
Article
CAS
PubMed
Google Scholar
Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6:140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu AH, Wu YT, Wang YP. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res Bull. 2017;132:139–49.
Article
CAS
PubMed
Google Scholar
Huang XY, Hu QP, Shi HY, Zheng YY, Hu RR, Guo Q. Everolimus inhibits PI3K/Akt/mTOR and NF-kB/IL-6 signaling and protects seizure-induced brain injury in rats. J Chem Neuroanat. 2021;114: 101960.
Article
CAS
PubMed
Google Scholar
Pernice HF, Schieweck R, Kiebler MA, Popper B. mTOR and MAPK: from localized translation control to epilepsy. BMC Neurosci. 2016;17:73.
Article
PubMed
PubMed Central
Google Scholar
Hernandez H, Roberts AL, McDowell CM. Nuclear factor-kappa beta signaling is required for transforming growth factor Beta-2 induced ocular hypertension. Exp Eye Res. 2020;191: 107920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rautava S, Lu L, Nanthakumar NN, Dubert-Ferrandon A, Walker WA. TGF-β2 induces maturation of immature human intestinal epithelial cells and inhibits inflammatory cytokine responses induced via the NF-κB pathway. J Pediatr Gastroenterol Nutr. 2012;54:630–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scorza CA, Marques MJG, Gomes da Silva S, Naffah-Mazzacoratti MDG, Scorza FA, Cavalheiro EA. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis. Neurosci Lett. 2018;668:169–73.
Article
CAS
PubMed
Google Scholar
Ichiyama T, Nishikawa M, Yoshitomi T, Hayashi T, Furukawa S. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy. Neurology. 1998;50:407–11.
Article
CAS
PubMed
Google Scholar
Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.
Article
CAS
PubMed
Google Scholar
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of interleukin-1β in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus. Eur J Pharmacol. 2014;731:31–7.
Article
PubMed
Google Scholar
Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy. Cells. 2018;7:26.
Article
PubMed
PubMed Central
Google Scholar
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.
Article
PubMed
Google Scholar
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci. 2019;76:2739–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Nian H, Li X, Yang Y, Wang X, Xu L, Shi H, Yang X, Liu R. Effects of the combined extracts of Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in the asthmatic rats with the treatment of budesonide. BMC Complement Altern Med. 2017;17:380.
Article
PubMed
PubMed Central
Google Scholar