Bilbo SD, Biedenkapp JC, Der-Avakian A, Watkins LR, Rudy JW, Maier SF. Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J Neurosci. 2005;25(35):8000–9. https://doi.org/10.1523/jneurosci.1748-05.2005.
Article
CAS
Google Scholar
Oldenburg KS, O’Shea TM, Fry RC. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin Fetal Neonatal Med. 2020;25(3):101115. https://doi.org/10.1016/j.siny.2020.101115.
Article
Google Scholar
Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD, Lightman SL. Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci USA. 2000;97(10):5645–50. https://doi.org/10.1073/pnas.090571897.
Article
CAS
Google Scholar
Doenni VM, Gray JM, Song CM, Patel S, Hill MN, Pittman QJ. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain Behav Immun. 2016;58:237–47. https://doi.org/10.1016/j.bbi.2016.07.152.
Article
CAS
Google Scholar
Canetta S, Sourander A, Surcel HM, Hinkka-Yli-Salomäki S, Leiviskä J, Kellendonk C, McKeague IW, Brown AS. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry. 2014;171(9):960–8. https://doi.org/10.1176/appi.ajp.2014.13121579.
Article
Google Scholar
Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64. https://doi.org/10.1038/mp.2012.197.
Article
CAS
Google Scholar
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection—maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol. 2018;299(Pt A):241–51. https://doi.org/10.1016/j.expneurol.2017.07.002.
Article
CAS
Google Scholar
Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiat. 2013;70(7):677–85. https://doi.org/10.1001/jamapsychiatry.2013.896.
Article
Google Scholar
Baghel MS, Singh B, Patro N, Khanna VK, Patro IK, Thakur MK. Poly (I:C) Exposure in early life alters methylation of dna and acetylation of histone at synaptic plasticity gene promoter in developing rat brain leading to memory impairment. Ann Neurosci. 2019;26(3–4):35–41. https://doi.org/10.1177/0972753120919704.
Article
Google Scholar
Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A, Coutureau E, Grégoire S, Bretillon L, Pallet V, Gressens P, Joffre C, Nadjar A, Layé S. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav Immun. 2018;73:427–40. https://doi.org/10.1016/j.bbi.2018.06.004.
Article
CAS
Google Scholar
Liang M, Zhong H, Rong J, Li Y, Zhu C, Zhou L, Zhou R. Postnatal lipopolysaccharide exposure impairs adult neurogenesis and causes depression-like behaviors through astrocytes activation triggering GABAA receptor downregulation. Neuroscience. 2019;422:21–31. https://doi.org/10.1016/j.neuroscience.2019.10.025.
Article
CAS
Google Scholar
Nouel D, Burt M, Zhang Y, Harvey L, Boksa P. Prenatal exposure to bacterial endotoxin reduces the number of GAD67- and reelin-immunoreactive neurons in the hippocampus of rat offspring. Eur Neuropsychopharmacol. 2012;22(4):300–7. https://doi.org/10.1016/j.euroneuro.2011.08.001.
Article
CAS
Google Scholar
Harvey L, Boksa P. A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy. Neuropharmacology. 2012;62(4):1767–76. https://doi.org/10.1016/j.neuropharm.2011.11.022.
Article
CAS
Google Scholar
Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience. 2006;143(1):51–62. https://doi.org/10.1016/j.neuroscience.2006.07.029.
Article
CAS
Google Scholar
Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci. 2002;22(13):5572–80. https://doi.org/10.1523/jneurosci.22-13-05572.2002.
Article
CAS
Google Scholar
Kolasinski J, Hinson EL, Divanbeighi Zand AP, Rizov A, Emir UE, Stagg CJ. The dynamics of cortical GABA in human motor learning. J Physiol. 2019;597(1):271–82. https://doi.org/10.1113/jp276626.
Article
CAS
Google Scholar
Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, Li B. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front Neurosci. 2018;12:562. https://doi.org/10.3389/fnins.2018.00562.
Article
Google Scholar
Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JL, Noebels JL, Rosenmund C, Zoghbi HY. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263–9. https://doi.org/10.1038/nature09582.
Article
CAS
Google Scholar
Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M. GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol. 2014;26:34–41. https://doi.org/10.1016/j.conb.2013.11.004.
Article
CAS
Google Scholar
Glausier JR, Lewis DA. GABA and schizophrenia: where we stand and where we need to go. Schizophr Res. 2017;181:2–3. https://doi.org/10.1016/j.schres.2017.01.050.
Article
Google Scholar
Di J, Li J, O’Hara B, Alberts I, Xiong L, Li J, Li X. The role of GABAergic neural circuits in the pathogenesis of autism spectrum disorder. Int J Dev Neurosci. 2020;80(2):73–85. https://doi.org/10.1002/jdn.10005.
Article
CAS
Google Scholar
Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry. 2011;16(4):383–406. https://doi.org/10.1038/mp.2010.120.
Article
CAS
Google Scholar
Kleschevnikov AM, Belichenko PV, Gall J, George L, Nosheny R, Maloney MT, Salehi A, Mobley WC. Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis. 2012;45(2):683–91. https://doi.org/10.1016/j.nbd.2011.10.009.
Article
CAS
Google Scholar
Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135(3):549–60. https://doi.org/10.1016/j.cell.2008.09.060.
Article
CAS
Google Scholar
Türkmen S, Löfgren M, Birzniece V, Bäckström T, Johansson IM. Tolerance development to Morris water maze test impairments induced by acute allopregnanolone. Neuroscience. 2006;139(2):651–9. https://doi.org/10.1016/j.neuroscience.2005.12.031.
Article
CAS
Google Scholar
Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM. Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis. 2010;38(3):464–75. https://doi.org/10.1016/j.nbd.2010.03.012.
Article
CAS
Google Scholar
Silvers JM, Tokunaga S, Berry RB, White AM, Matthews DB. Impairments in spatial learning and memory: ethanol, allopregnanolone, and the hippocampus. Brain Res Brain Res Rev. 2003;43(3):275–84. https://doi.org/10.1016/j.brainresrev.2003.09.002.
Article
CAS
Google Scholar
Martínez-Cué C, Martínez P, Rueda N, Vidal R, García S, Vidal V, Corrales A, Montero JA, Pazos Á, Flórez J, Gasser R, Thomas AW, Honer M, Knoflach F, Trejo JL, Wettstein JG, Hernández MC. Reducing GABAA α5 receptor-mediated inhibition rescues functional and neuromorphological deficits in a mouse model of down syndrome. J Neurosci. 2013;33(9):3953–66. https://doi.org/10.1523/jneurosci.1203-12.2013.
Article
Google Scholar
Na ES, Morris MJ, Nelson ED, Monteggia LM. GABAA receptor antagonism ameliorates behavioral and synaptic impairments associated with MeCP2 overexpression. Neuropsychopharmacology. 2014;39(8):1946–54. https://doi.org/10.1038/npp.2014.43.
Article
CAS
Google Scholar
Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016;353(6301):772–7. https://doi.org/10.1126/science.aag3194.
Article
CAS
Google Scholar
Jung YH, Shin NY, Jang JH, Lee WJ, Lee D, Choi Y, Choi SH, Kang DH. Relationships among stress, emotional intelligence, cognitive intelligence, and cytokines. Medicine. 2019;98(18):e15345. https://doi.org/10.1097/md.0000000000015345.
Article
Google Scholar
Comim CM, Bussmann RM, Simão SR, Ventura L, Freiberger V, Patrício JJ, Palmas D, Mendonça BP, Cassol OJ Jr, Quevedo J. Experimental neonatal sepsis causes long-term cognitive impairment. Mol Neurobiol. 2016;53(9):5928–34. https://doi.org/10.1007/s12035-015-9495-5.
Article
CAS
Google Scholar
Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, Li X. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta. 2012;1822(6):831–42. https://doi.org/10.1016/j.bbadis.2012.01.011.
Article
CAS
Google Scholar
Chen J, Song Y, Yang J, Zhang Y, Zhao P, Zhu XJ, Su HC. The contribution of TNF-α in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett. 2013;541:275–80. https://doi.org/10.1016/j.neulet.2013.02.005.
Article
CAS
Google Scholar
Chiu GS, Darmody PT, Walsh JP, Moon ML, Kwakwa KA, Bray JK, McCusker RH, Freund GG. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety. Brain Behav Immun. 2014;41:218–31. https://doi.org/10.1016/j.bbi.2014.05.018.
Article
CAS
Google Scholar
Li LY, Li JL, Zhang HM, Yang WM, Wang K, Fang Y, Wang Y. TGFβ1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. J Mol Neurosci. 2013;50(1):109–23. https://doi.org/10.1007/s12031-012-9879-1.
Article
CAS
Google Scholar
Bahramabadi R, Fathollahi MS, Hashemi SM, Arababadi AS, Arababadi MS, Yousefi-Daredor H, Bidaki R, Khaleghinia M, Bakhshi MH, Yousefpoor Y, Torbaghan YE, Arababadi MK. Serum levels of IL-6, IL-8, TNF-α, and TGF-β in chronic HBV-infected patients: effect of depression and anxiety. Lab Med. 2017;49(1):41–6. https://doi.org/10.1093/labmed/lmx064.
Article
Google Scholar
Depino AM, Lucchina L, Pitossi F. Early and adult hippocampal TGF-β1 overexpression have opposite effects on behavior. Brain Behav Immun. 2011;25(8):1582–91. https://doi.org/10.1016/j.bbi.2011.05.007.
Article
CAS
Google Scholar
Chen YH, Kuo TT, Chu MT, Ma HI, Chiang YH, Huang EY. Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model. NeuroImmunoModulation. 2013;20(4):223–32. https://doi.org/10.1159/000348440.
Article
CAS
Google Scholar
Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA. 2002;99(16):10825–30. https://doi.org/10.1073/pnas.152112399.
Article
CAS
Google Scholar
Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7–19. https://doi.org/10.1016/j.neuron.2009.11.031.
Article
CAS
Google Scholar
Chockanathan U, Padmanabhan K. Divergence in population coding for space between dorsal and ventral CA1. eNeuro. 2021;8(5):ENEURO.0211-21.2021. https://doi.org/10.1523/ENEURO.0211-21.2021.
Article
Google Scholar
Doosti MH, Bakhtiari A, Zare P, Amani M, Majidi-Zolbanin N, Babri S, Salari AA. Impacts of early intervention with fluoxetine following early neonatal immune activation on depression-like behaviors and body weight in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:55–65. https://doi.org/10.1016/j.pnpbp.2012.12.003.
Article
CAS
Google Scholar
Majidi J, Kosari-Nasab M, Salari AA. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull. 2016;120:1–13. https://doi.org/10.1016/j.brainresbull.2015.10.009.
Article
CAS
Google Scholar
Zhou R, Bai Y, Yang R, Zhu Y, Chi X, Li L, Chen L, Sokabe M. Abnormal synaptic plasticity in basolateral amygdala may account for hyperactivity and attention-deficit in male rat exposed perinatally to low-dose bisphenol-A. Neuropharmacology. 2011;60(5):789–98. https://doi.org/10.1016/j.neuropharm.2011.01.031.
Article
CAS
Google Scholar
Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34. https://doi.org/10.1146/annurev.psych.56.091103.070213.
Article
Google Scholar
Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004;84(1):87–136. https://doi.org/10.1152/physrev.00014.2003.
Article
CAS
Google Scholar
Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, Carromeu C, Muotri AR, Marchetto MC, Gage FH, Chen G. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci USA. 2016;113(3):751–6. https://doi.org/10.1073/pnas.1524013113.
Article
CAS
Google Scholar
Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function. Neuron. 2009;61(6):820–38. https://doi.org/10.1016/j.neuron.2009.03.003.
Article
CAS
Google Scholar
Pierre WC, Legault LM, Londono I, McGraw S, Lodygensky GA. Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. Faseb j. 2020;34(1):432–45. https://doi.org/10.1096/fj.201901461R.
Article
CAS
Google Scholar
Maccari S, Polese D, Reynaert ML, Amici T, Morley-Fletcher S, Fagioli F. Early-life experiences and the development of adult diseases with a focus on mental illness: the human birth theory. Neuroscience. 2017;342:232–51. https://doi.org/10.1016/j.neuroscience.2016.05.042.
Article
CAS
Google Scholar
Simanek AM, Meier HC. Association between prenatal exposure to maternal infection and offspring mood disorders: a review of the literature. Curr Probl Pediatr Adolesc Health Care. 2015;45(11):325–64. https://doi.org/10.1016/j.cppeds.2015.06.008.
Article
Google Scholar
Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun. 2021;91:505–18. https://doi.org/10.1016/j.bbi.2020.11.007.
Article
CAS
Google Scholar
Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A, Pomierny B, Krzyżanowska W, Bryniarska N, Basta-Kaim A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation. 2020;17(1):247. https://doi.org/10.1186/s12974-020-01923-0.
Article
CAS
Google Scholar
Claypoole LD, Zimmerberg B, Williamson LL. Neonatal lipopolysaccharide treatment alters hippocampal neuroinflammation, microglia morphology and anxiety-like behavior in rats selectively bred for an infantile trait. Brain Behav Immun. 2017;59:135–46. https://doi.org/10.1016/j.bbi.2016.08.017.
Article
CAS
Google Scholar
Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50. https://doi.org/10.1523/jneurosci.3667-11.2011.
Article
CAS
Google Scholar
Daumas S, Halley H, Francés B, Lassalle JM. Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem. 2005;12(4):375–82. https://doi.org/10.1101/lm.81905.
Article
Google Scholar
Akbari E, Naghdi N, Motamedi F. The selective orexin 1 receptor antagonist SB-334867-A impairs acquisition and consolidation but not retrieval of spatial memory in Morris water maze. Peptides. 2007;28(3):650–6. https://doi.org/10.1016/j.peptides.2006.11.002.
Article
CAS
Google Scholar
Banks MI, Hardie JB, Pearce RA. Development of GABA(A) receptor-mediated inhibitory postsynaptic currents in hippocampus. J Neurophysiol. 2002;88(6):3097–107. https://doi.org/10.1152/jn.00026.2002.
Article
CAS
Google Scholar
Wu X, Huang L, Wu Z, Zhang C, Jiang D, Bai Y, Wang Y, Chen G. Homeostatic competition between phasic and tonic inhibition. J Biol Chem. 2013;288(35):25053–65. https://doi.org/10.1074/jbc.M113.491464.
Article
CAS
Google Scholar
Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA. 2004;101(10):3662–7. https://doi.org/10.1073/pnas.0307231101.
Article
CAS
Google Scholar
Cheng VY, Martin LJ, Elliott EM, Kim JH, Mount HT, Taverna FA, Roder JC, Macdonald JF, Bhambri A, Collinson N, Wafford KA, Orser BA. Alpha5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci. 2006;26(14):3713–20. https://doi.org/10.1523/jneurosci.5024-05.2006.
Article
CAS
Google Scholar
Martin LJ, Oh GH, Orser BA. Etomidate targets alpha5 gamma-aminobutyric acid subtype A receptors to regulate synaptic plasticity and memory blockade. Anesthesiology. 2009;111(5):1025–35. https://doi.org/10.1097/ALN.0b013e3181bbc961.
Article
CAS
Google Scholar
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15(10):637–54. https://doi.org/10.1038/nrn3819.
Article
CAS
Google Scholar
Blaesse P, Schmidt T. K-Cl cotransporter KCC2–a moonlighting protein in excitatory and inhibitory synapse development and function. Pflugers Arch. 2015;467(4):615–24. https://doi.org/10.1007/s00424-014-1547-6.
Article
CAS
Google Scholar
Dargaei Z, Bang JY, Mahadevan V, Khademullah CS, Bedard S, Parfitt GM, Kim JC, Woodin MA. Restoring GABAergic inhibition rescues memory deficits in a Huntington’s disease mouse model. Proc Natl Acad Sci USA. 2018;115(7):E1618–26. https://doi.org/10.1073/pnas.1716871115.
Article
CAS
Google Scholar
Liu R, Wang J, Liang S, Zhang G, Yang X. Role of NKCC1 and KCC2 in epilepsy: from expression to function. Front Neurol. 2019;10:1407. https://doi.org/10.3389/fneur.2019.01407.
Article
Google Scholar
Kahle KT, Khanna AR, Duan J, Staley KJ, Delpire E, Poduri A. The KCC2 cotransporter and human epilepsy: getting excited about inhibition. Neuroscientist. 2016;22(6):555–62. https://doi.org/10.1177/1073858416645087.
Article
CAS
Google Scholar
Kitayama T. The role of K(+)-Cl(-)-cotransporter-2 in neuropathic pain. Neurochem Res. 2018;43(1):110–5. https://doi.org/10.1007/s11064-017-2344-3.
Article
CAS
Google Scholar
Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16(3):302–7. https://doi.org/10.1038/nm.2107.
Article
CAS
Google Scholar
de Ferron BS, Vilpoux C, Kervern M, Robert A, Antol J, Naassila M, Pierrefiche O. Increase of KCC2 in hippocampal synaptic plasticity disturbances after perinatal ethanol exposure. Addict Biol. 2017;22(6):1870–82. https://doi.org/10.1111/adb.12465.
Article
CAS
Google Scholar
Jiang J, Tang B, Wang L, Huo Q, Tan S, Misrani A, Han Y, Li H, Hu H, Wang J, Cheng T, Tabassum S, Chen M, Xie W, Long C, Yang L. Systemic LPS-induced microglial activation results in increased GABAergic tone: a mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun. 2022;99:53–69. https://doi.org/10.1016/j.bbi.2021.09.017.
Article
CAS
Google Scholar
Järlestedt K, Naylor AS, Dean J, Hagberg H, Mallard C. Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice. Neuroscience. 2013;253:21–8. https://doi.org/10.1016/j.neuroscience.2013.08.040.
Article
CAS
Google Scholar
Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32. https://doi.org/10.1038/nature05918.
Article
CAS
Google Scholar
Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes. 2017;8(3):104. https://doi.org/10.3390/genes8030104.
Article
CAS
Google Scholar
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology. 2013;38(1):138–66. https://doi.org/10.1038/npp.2012.125.
Article
CAS
Google Scholar
Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci. 2004;24(19):4683–91. https://doi.org/10.1523/jneurosci.5265-03.2004.
Article
CAS
Google Scholar
Zhang Z, Wang X, Wang W, Lu YG, Pan ZZ. Brain-derived neurotrophic factor-mediated downregulation of brainstem K+-Cl- cotransporter and cell-type-specific GABA impairment for activation of descending pain facilitation. Mol Pharmacol. 2013;84(4):511–20. https://doi.org/10.1124/mol.113.086496.
Article
CAS
Google Scholar
Shulga A, Thomas-Crusells J, Sigl T, Blaesse A, Mestres P, Meyer M, Yan Q, Kaila K, Saarma M, Rivera C, Giehl KM. Posttraumatic GABA(A)-mediated [Ca2+]i increase is essential for the induction of brain-derived neurotrophic factor-dependent survival of mature central neurons. J Neurosci. 2008;28(27):6996–7005. https://doi.org/10.1523/jneurosci.5268-07.2008.
Article
CAS
Google Scholar
Taylor RA, Ai Y, Sansing LH. Abstract TMP55 TGF-β1 induces microglial BDNF production and improves functional outcome after intracerebral hemorrhage. Stroke. 2016;47(suppl_1):ATMP55. https://doi.org/10.1161/str.47.suppl_1.tmp55.
Article
Google Scholar
Hu Y, Chen W, Wu L, Jiang L, Liang N, Tan L, Liang M, Tang N. TGF-β1 restores hippocampal synaptic plasticity and memory in Alzheimer model via the PI3K/Akt/Wnt/β-Catenin signaling pathway. J Mol Neurosci. 2019;67(1):142–9. https://doi.org/10.1007/s12031-018-1219-7.
Article
CAS
Google Scholar
Chin J, Liu RY, Cleary LJ, Eskin A, Byrne JH. TGF-beta1-induced long-term changes in neuronal excitability in aplysia sensory neurons depend on MAPK. J Neurophysiol. 2006;95(5):3286–90. https://doi.org/10.1152/jn.00770.2005.
Article
CAS
Google Scholar
Caraci F, Gulisano W, Guida CA, Impellizzeri AA, Drago F, Puzzo D, Palmeri A. A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep. 2015;5:11252. https://doi.org/10.1038/srep11252.
Article
Google Scholar